
‘The next line’: understanding programmers’ work

Barry Brown
Department of Computing Science
University of Glasgow
www.dcs.gla.ac.uk/~barry/

Introduction
It is perhaps surprising that while computer programming has enabled so much change in the world, as a
practice we are still relatively unaware of its details and practices. It is obvious, for example, that writing a
program in a functional is quite significantly different from an object orientated language. What is less clear
is how these differences actually shape and influence the practice of ‘coming to get a computer to regularly
do what we want it to do’. Do programmers approach problems differently? Would a functional program-
mer start at a different part of a problem from an OO programmer?

More broadly, despite the pervasiveness of programming as work, we only have the most schematic under-
standing of what the work of programming actually is and the resources drawn upon. Indeed, programming
as an activity has been systematically distorted in many accounts in the literature. For example, in the meth-
ods literature programming is laid out an orderly activity which has to be systematised and organised. Even,
the agile methods literature skips over the details of much of the practices of applying methods. How, for
example, is it that patterns are reinterpreted afresh in each new setting? How is re-factoring as a coding ac-
tivity decided upon? While agile methods seem to be gaining increased support, there is still little under-
standing of why they are successful or popular - agile methods might be the answer, but we are still unclear
about what the question is.

Indeed, to social scientists coding at times can suffer from being festishised as an activity. One can talk at
great length about ‘code’ with little concern for what anybody actually does when coding, or the nature of
code itself. Deleuze, for example, talks at length about various algorithms (such as in his discussion of the
Koch snowflake (Deleuze and Guattari 1987)), but he has little interest in the work of applying and using
those algorithms. What I am interested in discussing in this paper is understanding the work of coding. In-
deed, I would argue that as earlier studies of the work of scientists uncovered, the actual practices of science
often bear little recognition with the accounts given by either philosophers or practitioners. Coding is an ex-
pert practice that is often described in only the most cursory terms or even distorted terms by its practitio-
ners, and at times in ways which distract attention from many of its most important details (for example,
(Graham 2004)). Programming is a local practice - one which takes place at the computer and on the inter-
net, and understanding code as it is written similarly has to take a fine grained approach to understanding
that practice.

The current state of the field
Experimental work on programming, which dominate the field currently, suffer from a number of serious
problems in getting at the practice of programming. There are a number of assumptions that these studies
make which should be called into question. The first is that all software problems are equivalent. Experi-
ments often take the from of setting a trial problem and then testing how the efficiency of programming is
effected with different conditions. If one considers that programming is as varied a practice as say, painting,
then different forms of painting will demand very different techniques. Moreover, programmers themselves
all engage in different practices - not least because nearly all are self taught - and one cannot assume a ho-
mogeneity of practices. This is not just a question of skill (although one would want to question any sort of
simple comparison between expert and novice programmers) but of approach and worldview.

Perhaps more seriously, these experiments lack an investigation into what would be most useful for under-
standing programmers work - what they do. Instead we tend to get analysis of numerical measures of the out-
comes of experiments. The worst culprit here is of course the measure of time taken to solve a problem - as
if a painting done quicker than another is obviously better. However these experiments contain, although
unexamined, exactly what is of interest. Programmers in these experiments program. Yet this is on the whole

left unexamined, and if it is examined it is done simply through extracting types. In any sort of coding we
have something very rich which we can examine. Unlike some activities, coding is a publically available and
examinable activity in that it produces code as it is written which we can analyse. One reason that this is left
unexamined is that for most approaches there a few resources which enable the examination of this activity.
If one relies upon assuming that programming takes place ‘in the head’ then the fact that all this work is pub-
licly done is if anything a nuisance. One instead has to go chasing cognitive structures - ‘a beetle in the box’
to use Wittgenstein’s example, in a box that can never be opened. Even though coding is publicly available as
programmers code, and much of it is talked about at length by programmers in meetings, and as they pro-
gram, often the focus seems to be on what is hidden rather than what can be seen.

In turn interview studies of programmers have serious shortcomings in how they rely upon the reflective skill
of programmers, beyond what is usually possible or practical to examine. It is just too complex to get to de-
scribe what you do when you program in an interview - much like asking someone in interviews how to play
the piano will hardly teach you how to play the piano. Surveys also rely upon the (extremely high) post hoc
justification skills of managers rather than the practices of in situ programming. These methodological and
theoretical shortcomings are perhaps behind our lack of understanding of what a software method actually
is, and how it effects and takes form in the day to day work of programmers, managers and so on.

Unexcavated aspects of programming
An alternative, and the one pursued here, is the examination of recordings of code as it is written, alongside
introspection, and self-reflection, into what one does when coding. Each of these can assist and help each
other, in that it is difficult to make sense of videos of programming without reflection on ones own practices
of coding - they are not data alone but rather that stand side by side with the ability to explore ones own
practices. I am suggesting here that through looking at a record of programming as it is done alongside self
reflection can help us understand what it is, as competent practitioners, is done as the work of programming.
The model here is Sudnow’s work on Jazz musicians (Sudnow 2001), where he extracts from his own experi-
ence a narrative of his own learning to play jazz piano. The problematic of learning, and the differences
between manual skill, tactics and strategies are expertly dissected. Yet, taking a slightly more empiricist turn
than Sudnow’s use of recordings, I would suggest that recorded video data can be a supplement here, not
only for its rhetorical contribution, but for how it can focus us on both the variety of practices (not everyone
programs like us) and also the details which can be missed in our experiences in the moment.

In particular, here I draw on a video of some coding done by a colleague of mine, Malcolm Hall, using Mi-
crosoft Visual studio in c#. While coding Malcolm ran a logging program which took screen captures of his
screen while he was programming a small PDA application to log bluetooth devices on a PDA. I won’t go
into great depth with the program, and the screencaptures themselves have some limitations in analysing his
work. However, from the captures we can extract (alongside self-reflection) some lessons about how coding
proceeds. In particular, this in vivo recording methods lets us see problem as they are approached and the
code as it is written line by line until there is finally a working program.

Our problem in starting analysis is how to frame the problem of understanding code? I suggest that one
question we might seek an answer to is ‘How does a programmer write the next line of code?’, where next is
any particular line proceeded by code, and followed by code (with two possible exceptions). Of course, one
draws on lots of different resources when writing that line of code - no line of code is written blind, and there
are lots of things we draw on to decided which line of code we will write.

Let us take a first extract of Malcolm’s code, one of the very first lines of code which Malcolm writes on the
project:

Private void loggingEnabledMenuItem_Click(object sender, System.EventArgs e)
{
	

 loggingEnabledMenuItem.Checked = !loggingEnabledMenuItem.Checked;
}

Prospective/Retrosepctive
Malcolm is writing some code which is linked into a menu on the
phone. When the user clicks Logging/Enabled, his code will
add a checkmark to that menu item ‘selecting’ it, and when the
user clicks again it will ‘unselect it’. This bit of code is written
after Malcolm starts to draw the basic interface for his applica-
tion (pictured above). He creates a menu and VisualStudio cre-
ates a ‘stub’ (an empty method) for loggingEnabledMenuItem.
Malcolm then writes the line which toggles the value of the
Checked value which is part of the loggingEnabledMenuItem
object.

The first point to be drawn from this very simple example is the
way in which code which is written is embedded in an environ-
ment. Gone are the times when programmers would write code
with no reference to any other code. Code is written linked into
an OS, tool, foundation, and so on. In building houses, the tools
and materials of building are rich with the knowledge and his-
tory of building, each tool encapasulates the knowledge of mil-
lions of previously built houses. So it is in little extract of pro-
gramming. Indeed, the first line of code here isn’t even written by Malcolm, it is generated from the GUI
builder. This line of code thus depends upon what has gone before - the class definitions, using other meth-
ods, the OS code, Visual Studio, a whole world which links all this together. It is remarkable quite how much
software reuse is going on here, especially since software reuse was so much of a goal of 80s software re-
search. In many ways they have been gloriously successful. This embedding of code in ac context goes be-
yond the tools in use. In writing this line of code there is considerable retrospective orientation to what will fit.
What to write depends to a large extent on what has been written before. Each line of code is unique in
some way, but it also gets its sense from what has been written before. In this case it is not strictly a line of
code but the creation of the ‘loggingEnabledMenuItem’ menu item. Code depends for its sense on what has
gone before - what has been written in the previous lines.

This line of code that is written also displays a second feature of code - its prospective nature. The code itself
here doesn’t do anything. It is on all accounts a useless bit of code since it will only toggle an item on a
menu. Yet the code does make lots of sense as a starting point on an application where the user will want to
turn logging on or off. In this way the code is written with a prospective orientation to what will happen
next. The code gains its sense from how the program will unfold, rather than simply where it is now.

These two orientation in code writing - the prospective/ retrospective nature, are in some senses fairly obvi-
ous. Language has an indexicality which is similar, but it does have a number of interesting ramifications.
One is the way in which code can seem to ‘write itself ’ - that the next line of code is obvious when one is fol-
lowing what is being done. When reading code ‘surprises’ are problems. The sense of the code develops in a
body of code, of course, but for this it relies very much on the code around it.

Another interesting point that follows here is how code projects into the future its use. That is to say, that one
can guess from a reading of code what comes next. As it is written you can come back to code and read what
can now be done using what is there. So in this case, you have an item which can be toggled that turns log-
ging on and off. So code can now be written which uses that toggle - later this code becomes:

private void loggingEnabledMenuItem_Click(object sender, System.EventArgs e)
	

 	

 {
	

 	

 	

 loggingEnabledMenuItem.Checked = !loggingEnabledMenuItem.Checked;
	

 	

 	

 if(loggingEnabledMenuItem.Checked)
	

 	

 	

 {
	

 	

 	

 	

 discoverer.Start();
	

 	

 	

 }
	

 	

 	

 else

	

 	

 	

 {
	

 	

 	

 	

 discoverer.Stop();
	

 	

 	

 }
	

 	

 }

So here the code has expands out from something which only toggles a menu item, to code which then either
starts or stops the discoverer based on this menu item. This aspect of code - it’s ‘projection’ also explains
some features of code as it is written. Button and Sharrock in their excellent discussion of coding (Button
and Sharrock, (Button and Sharrock 1995) discuss how programmers make use of ‘ scaffolding’ code - code
which doesn’t do anything, but is there to indicate that code should be written, in the future to do such and
such. Any coder will recognise scaffolding code.

Yet, compared to other construction activities what is
perhaps surprising about coding is how little scaffolding
there is. Programmers do not always go ahead of
themselves sketching out a structure before it is actually
coded. Far more common is that the written code pro-
jects forward, to the competent practitioner, what needs
to be written, what is missing and so on. So actually
not much in the way of scaffolding needs to be written,
beyond what the compiler requires so as to run. The
projected future of the code can be ‘read’ from what is
already written. When programmers do explicitly pro-
ject forward their code into what will be written, fre-
quently it takes the form of a comment rather than
scaffolding: an example of this is the %TODO com-
ments in code allow programmers to explicitly project
into the future what their code should do.

The latest release of visual studio has a design feature
which displays some of this projection. As you are
writing code, if you write a method which has not yet
been declared, you can choose to have the system gen-
erate a ‘stub’ for you of the declaration. This ‘declara-
tion by use’ supports the building up of the necessary declarations for code where it is used. The bits of code
that are written ‘project’ what is going to have to be written later, and this feature allows you to put in the
code to indicate where that will be called.

Planning problems
Returning to the notion of plans, I would argue that programming does not take place as a planful activity
where a ‘plan’ is outlined in advance of what the whole of the code is, a plan which is then filled in over time.
Instead it is more a dialogical relationship between the code, the developing practice of the machine and
what the programmer arranges as to what they will do. Suchman’s comments on plans here stand as a useful
counterpoint to the description of programming in terms of ‘plans’ and their ‘implementation’ in some stud-
ies. Programming is a discovering activity, and as such is not determined in advance - it involves the interac-
tion and engagement with what could be, an exploration of what a computer can do.

Following Visual Studio’s lead here, one might explore technically how we could better support the projection
of code by programmers as part of ad hoc planning. Support for the generation of structure as a side effect,
or as part of, writing code would support better the ‘bootstrapping’ relationship between program structure
and code. One could, for example, write methods without having to move from one part of the program by
inlining them into the code and then having that code ‘sent’ to the respective method. Another extention
could be instantiation by use. Often code contains objects which will only ever be instantiated once - such as
a controller object for example. This distinction is often made by using a lowercase version of the class name

for this single object - BluetoothController for the class, bluetoothController for the object. One could imag-
ine implicitly referring to this object and having it constructed as a singleton from that class1.

This not to downplay the importance of the programmers sense of what they are doing and their position in
solving the overall problem. Programming does include considerable planning but rather in the sense of an
outline (or projection) of how the problem will be approached rather than a fixed organisation of what will
be done. This plan does involve considerable development and change over time.

It is important to point out that there are two different plans at work. One plan is the way in which the pro-
grammer will approach the problem, the order in which they will solve the problems. The second is the plan
of how the computer eventually will work. A sensible approach is often for the programmer to treat these as
equivalent and to program the computer in terms of stages of the final solution. This is particularly useful
for testing, since often previous parts of a problem depend on earlier parts (although not in the case of unit
testing. However, they are not the same and often the work of the programmer and the computer are con-
flated.

One approach to problem solving is problem decomposition whereby a problem is decomposed into smaller
problems which can be solved one by one - as (Abelson and Sussman 1996) puts it programming is breaking
large problems into small ones. So, if one wants to do a word count program one approach might be to write
code that reads in text and prints out numbers first. Then you would write code which will go through the
text and count the number of words. Yet the solution (or the computer) also involves decomposing problems
— such as in quicksort which will divide the problem of sorting numbers into sub problems involving smaller
lists.

The decomposition of the programmer is different from that of the computer, however, in many ways. One is
that the stage of problems which are to be solved in writing a large program are ordered in terms of what
problems can be solved now, and what problems will depend upon others for their testing. So the division of
problems involves working out ‘what can I do now’ and separating this from ‘what can I do later’. Since most
systems rely on some sort of rudimentary UI, coding often starts (as in this case) by working on a user inter-
face. Problem decomposition for the programmer is therefore one of also problem ordering - of finding some
solvable beginning problems, some place where you can start. Following that you need to work on harder
problems and then work on fitting all these problems together.

What is important then about programming is getting some sort of handle on how one might order the prob-
lems that one has to solve, and how they might interact with each other. Indeed, one might approach difficult
problems first and then move onto the easier problems, since how the difficult problems are solved will have
more impact on the other problems. Or one might seek to attempt the more general problems first. There is
a problem ordering alongside a problem decomposition.

This sort of arrangement can be seen in Malcolm’s code. Here he starts by writing the logger code which
tracks how many bluetooth devices have been seen and writes this to the user interface. This is developed
alongside the bluetooth code (in a different class) which will actually find the required devices and do the blu-
etooth searching. Malcolm moves between each problem in line: first get it to find bluetooth devices. Then
handle loosing bluetooth devices. All the time he keeps updating the user interface code to test the other
code. His progress here follows an ordering of problems which is in some sort of rough tandem with how the
computer will proceed, although with some differences.

As an aside, along with the decomposition of problems for users, and the executing of the computer, a pro-
grammer must also decide how to decompose the problem in terms of the structuring entered into the com-
puter. Most languages take some sort of decomposition of a program in terms of its structure, and one that
is connected to but not exactly similar to, the decomposition of the problem execution. It is interesting to

1 Christian Greiffenhagen has pointed out to me that this is the same as in maths, where objects and classes
are often defined simultaneously and differentiated using case - e.g e∋E to mean any e which is a member
of the class E, for which the properties of e can then be explored.

note that much of the code that is written in object oriented languages, for example, concerns linking to-
gether different objects in the code, calling other objects instantiating objects and so on.

Relationship between the code as written and the code as executed
Programs must be written for people to read, and only incidentally for machines to execute. (Abelson and Sussman 1996, xv)

In the process of writing code one enters into a dialogue with a computer about what is not, and what is, ac-
ceptable. While the ability of others to read code, and the readability of code, are important - and often a
way of differentiating a good from an excellent coder - it is the computer itself who must be impressed upon
all others. Without a compiling and running program, whatever the quality of the resulting code, it is left
wanting. Much of programming, then, is interacting with the computer - with the compiler, the running of
code and the debugger so as to get closer to a finished program. Outside classroom situations, the computer
is the final judge of whether code works or not, however elegant.

In this sense the quote from Abelson and Sussman’s classic textbook is incorrect. Computers are not in any
sense incidental to the job of programming, and to claim so is simply to confuse what is maths and what is
computer science. Computer languages do double duty in that they work as an understandable notation for
humans, but also as a mechanically executable representation suitable for computers. Computer languages
are quite different from mathematical notation which in many cases depends upon what what a competent
mathematician can follow (see for example the debates around the three colour problem (MacKenzie 1999)).
Computer code has to be automatically translatable to a form which can be executed by a machine, one with
little if any reasoning ability. Abelson and Sussman’s quote is applicable to psuedocode, but not to real code.
Programming languages thus sit in an unusual and interesting place - designed for human reading and use,
but bound by what is computationally possible.

All this means that one of the key and most important jobs of programming is the dialogue with the com-
puter to work out what works. The relationship between the code, and its behaviour on the executing com-
puter is in many ways the essential role of code. This takes many different forms: in some ways simply writing
the code is a form of working out what will work out. A programming language itself in its syntax and se-
mantics constrain what is possible to write. It is also in the edit-compile-test cycle, where the code is compiled
to see if the code checks out in terms of static checks (syntax, typechecking, etc.), and then by testing to see if
it does what it should. Code is often executed during its writing to see the effects of certain parts of code that
have been written - experiments in a way. Since the execution of code in a complex codebase is not predict-
able ‘at a glance’, running the code is often a much easier way of seeing if it will do what is intended.

Executing code, for most programmers, is their main way of testing the code. In doing this the programmer
usually has some sort of expected behaviour - and often unexpected behaviour is what happens. If the pro-
gram doesn’t ‘work’ then the programmer must work out from what happened what has actually happened
with the code. Often the bug is immediately obvious, and at other times not. The behaviour of the computer
is interpreted through understanding what the program code is meant to do, and how its potentially aberrant
behaviour can correspond with a potential bug.

Some codebases are so large that compilation takes too long to make testing frequently practical, although
mode codebases are split into parts so that the whole code does not need to be compiled for testing. Debug-
gers are also extensively used here to interrogate the execution of code as it runs, although debugging a large
program where changes are distributed through the code.

While debuggers are obviously been a great assistance for programmers, the relationship between the code as
it is run, and the code as it is edited could support more technology. Just now there is something of a divide
between the representation of written code and the execution of that code. For example, it would be straight-
forward for a IDE to track what bits of code are executed when a program is run in debug mode. This could
be displayed on top of the code in the form of a light representation of what lines have been executed and
what lines have not. This would show - at a glance - to a programmer what parts of the code are being
tested. For example most coders have experienced the frustration of attempting to debug a clause in an if
statement, only to find that the bug is with the condition and the clause is not being executed. Showing what

code was executed and what has not been would display this sort of information at a glance. It is also prom-
ising to explore how the history of code might be better brought into the representations used in computer
science (Chalmers 2004; Bell, Hall et al. 2006).

Social relationships in code
A second important relationship which figures in code is that between coders. Multiple programmers often
work on the same program, and as the open source movement shows, spend considerable time working to-
gether to solve problems. The social relationship around code has obviously been a key part of the literature
on coding, and indeed this is one of the rationales behind peer programming.

This social relationship is shown in the way that program code is written - pace Abelson - for others to read.
Yet a relatively unexamined aspect of this is how exactly program code is written for others to read. As we
described above, program code has a certain trajectory - one can read what is going to happen next in some
code. Yet code is also deliberately written such that it can be read by others at a later date, and also the pro-
grammer themselves who may have to come to the code later. Comments are one obvious example of this,
but also program code might be structured in such a way as to enable its future comprehension. This is a sort
of predictive work of programmers.

An interesting question here, to be examined in programmers practice, is how programmers make judge-
ments about who will read their code in future and what they need to understand. The writing of code can
display an understanding by the programmer not only of what the system needs to do to execute their code,
but also who is likely to need to read that code in the future - if anybody. Some code for example is charac-
terised by its quick and throwaway nature - code that isn’t likely to be read by anybody in the future (although
as is often the case it is). Programmers often also spend time ‘cleaning up their code’ making it presentable to
others.

Language features often explore this future redability of code. An example of this is the use of generics in
code. Generics are general data structures that are specialised in a particular way only to deal with one type -
for example a list of ints. While generics do not add anything to the speed of programs, their key pay off is
in how they make it clearer in code what is actually being done with a particular paramatarised data struc-
ture. A particular list, when seen by someone later, is visibly readable as a list of whatever it is, rather than
simply as a list. This, through an extension to code, adds to the readability of the code in question to others.
Providing general awareness of code reading has also been provided by systems such as ‘edit ware and read
ware’ (Wexelblat and Maes 1999).

Structures in code
A last, and final, point I will make concerning coding is its structured nature. Ever since the ‘structured pro-
gramming’ movement considerable effort has been made into making code modular, with a lack of depend-
encies, refactored code when necessary and so on. In modern object oriented programming a large amount
of program text is concerned with this structuring - declaration of methods and classes, calling methods, set-
ting events and so on. This structure sits on top of the textual organisation of program text - its separation
into files, the line by line nature of text and so on.

In the video of Malcolm coding his rearrangement of the structure of the program as it develops can be seen
- he starts with one UI class, starts putting code into that, and then creates another class - a controller which
will run the code called from the UI class. He then creates a last class, a discoverer, to abstract out some of
the more generic code from the controller class. Much of his work of programming is thus organising the
code as it is written.

Alongside this class decomposition there are also a rich number of other structures which pepper program
code. For example, the graph of which objects call other objects ,the call graph of a program and data paths
through a program. There are also more descriptive structures such as the ‘hot’ and ‘cold’ parts of the code,
the different languages used, age of code and so on, all these can be used to structure and separate code be-
yond what is written in the text. Much of programming involves the editing of code which spans across two
different classes (and thus two different text files) but which is intimately connected in terms of data flow and

method calls. In these ways the editing of programs over time, while it may involve the editing of multiple
files or classes, and so have changes distributed across multiple files, may take place across parts of a program
that are very close in terms of their structure. The representation of code thus can contribute to how ‘local’
changes are in a program. One disadvantage of object oriented programming is how it can distribute
changes across many different objects at times, rather than encapsulating changes. Indeed, much of the job
of object oriented programming is fighting with the structure of a program to effectively do what one wants -
structuring and object oriented decomposition give lots of advantages to programs, but they can also make
development difficult or ‘jumpy’, as one is working on multiple objects which call each other. This is one rea-
son behind the use of aspect oriented programming where code can be written which ‘cuts across’ parts of
the program - such as by specifying code which would be run after a particular variable is changed or a
method is called.

The ideas of aspect oriented programming can be taken a little way further if one understands the close in-
teraction of parts of code. Above I mentioned the notion of ‘inlining’ methods into program code. One
could also specify clauses such as calling a method but adding extra code (a ‘but’ clause) which would be exe-
cuted at that point in the method, causing a modification of the methods behaviour. Again this supports the
crosscutting of functionality across different modules in the code.

Conclusions
Here I have outlined some on the different contingencies which programmers must be concerned with when
working on the ‘next line’ of code, covering four different aspects of how programmers write ‘the next line’.
Each of these aspects of coding are orientated to ‘in the moment’ as programmers work on writing code: the
prospective/retrospective situation of code, the role of plans - in particular how problems are decomposed
and ordered, the ‘dual duty’ nature of code and the relationship between code as executed and code as writ-
ten, the social aspects of code and lastly the structural aspects of code.

Programmers must relate to and bring these different aspects of coding together. However, the generic
analysis here presents a number of shortcomings. Namely, the problems presented here are generic to pro-
gramming. What adds and produces the pleasure of programming, of course is that it is a distinct practice
for each program. Each program presents its own problems and issues. Future work will endeavour to focus
more specifically on outlining and understanding what specific problems are entered in each specific case,
and how this variety of programs interacts with the generic concerns outlined here.

In closing I would point the direction back to understanding code, its writing, reading, situation and produc-
tion. Extensive work here will enable a concise examination of how programming can be better understood
and designed for as a practice.

References
Abelson, H. and G. Sussman (1996). Structure and Interpretation of Computer Programs, MIT Press.
Bell, M., M. Hall, et al. (2006). Domino: Exploring Mobile Collaborative Software Adaptation. To appear in

Proc. Pervasive 2006, Dublin.
Button, G. and W. Sharrock (1995). The mundane work of writing and reading computer programs. Situated

Order: Studies in the Social Organization of Talk and Embodied Activities. P. t. Have and G.
Psathas. Boston University Press of America.

Chalmers, M. (2004). "A Historical View of Context." CSCW Journal 13(3): 223-247.
Deleuze, G. and F. Guattari (1987). 1440: The Smooth and the Striated. A Thousand Plateaus: Capitalism

and Schizophrenia. Minneapolis, University of Minnesota Press.
Sudnow, D. (2001). The ways of the hand: a rewritten account. Cambridge, Mass., MIT Press.

Graham, P. (2004). Painters and hackers, O'Reily.
MacKenzie, D. (1999). "Slaying the kraken: the sociohistory of a mathematical proof." Social studies of sci-

ence 29(1): 7-60.
Wexelblat, A. and P. Maes (1999). Footprints: History-Rich Tools for Information Foraging. Proceedings of

CHI 1999.

